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1. Introduction

In [31 Moore and Shannon obtain some basic results concerning

the reliability of two-terminal networks composed of independent

components of equal reliability. Tn particular, they show that the

reliability of the network plotted as a function of the component

reliability is S-shaped, i.e. crosses the diagonal at most once and

always from below. In [1) Birnbaum, Esary, and Saunders generalize

the results of Moore and Shannon to what they call coherent structures;

a coherent structure being, roughly, one whose performance does not

deteriorate when failed components are replaced by functioning ones.

Coherent structures include two-terminal networks, "k out of n"

structures (structures which function if and only if at least k

out of n components function), and many others. In £1] it is

assumed, just as in [3), that components are independent and of

identical reliability.

Tn the present paper we shall exploit a basic theorem on the

covariance of increasing functions of random variables which permits

us to discuss the case of coherent structures whose components are

independent, but of differing reliabilities. We obtain first some

convenient bounds on the reliability of structures, then a generali-

zation of some statistical properties obtained in [1] for coherent

structures, and finally a generalization of a differential inequality

introduced in [3] which relates structural and component reliabilities.

One of the consequences of the present approach is a very simple and

direct demonstration of the S-shapedness results pre 3ented in [3]

and [],
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2. Background and notation

The systems (or structures) we consider are capable of only two

states of performance; either they function or they fail to function.

Similarly the components from which the systems are built may function

th
or fail to function. We associate with the i component of a system

a binary variable x. with x. = 1 when the component functions and1 1.

x. = 0 when the component fails. The state of the entire set of com-

ponents of the system is indicated by the vector x = (xlx 2 ,...,Xn).

The number of components n is called the order of the system. It

is assumed that the state of the system is determined by the states

of the components, so that the state of the system may be indicated

by a binary function O(W) with O() = I when the system functions

and O(x) = 0 when the system fails; $ is called a structure

function.

Within the class of binary systems of binary components we are

particularly interested in those that are coherent. A system having

structure function 0 is coherent if:

(a) O(W) > 0(y) whenever x >, where by x > we mean

x,> y, i = 1,2,.,n

(b) 0(l) = 1, where 1 = (1,i,...,i)

(C) 0(0) = 0, where 0 = (0,0,...,0).



3

Functions f(x) (binary or otherwise) which satisfy property (a)

will be called increasing. A structure function 4 which is increasing

has been called [1] semi-coherent. It is immediate that the only semi-

coherent systems which are not coherent are the two trivial cases

(x) a 1 and O(x) = 0. The increasing property of coherent systems

seems descriptive of many real systems -- if sufficient components are

functioning to cause the system to function, then the functioning of

additional components can only improve matters; if sufficient components

have failed to cause system failure, then the failure of additional

components can only make matters worse.

In considering the reliability of systems we will suppose that

each component functions with a certain probability. This is equiva-

.th
lent to associating to the i component a binary random variable

Xi., where pi = PrEX = 1] = E[X i ] is the reliability of the

component, and qi = 1 - pi = Pr[Xi = 0] is component "unreliability".

The reliability h(p) of the system is then

h(p) Pr[3(X) = lip] = E[O(Ip],

where p =(plP2,...,pd.

A coordinate x. of a vector of binary variables x is

inessential to a function f(x) if

f(lI) = f(olx)



for all vectors (.i,X), where

(li,x) = (xl,...,xillxi+l,.xn)

(Oi,x) = (Xl,...,Xiil,O,Xi+l,...,xn)

(-,,) (X1 .. ,x-99xi1 . xn).(i,x = Xl, . . .,Xi l ,x~ l , .... n)

When the function is the structure function of a system an inessential

coordinate corresponds to a component whose functioning or failure

does not affect the performance of the system. Any coordinate which

is not inessential to f is called essential to f.

A vector x for which a structure function O(W) = 1 is a path

of the system represented by 0. If O(x) = 0, x is a cut. When the

system is coherent, the coordinates of a path which are one indicate

a set of components which by functioning are sufficient to cause the

system to function; the coordinates of a cut which are zero indicate

a set of components which by failing are sufficient to cause the

system to fail.
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3. Covariance of increasing functions

A key tool in our analysis of structural reliability is a specialized

version of the Tchebichev inequality [2] stating that the covariance

of two increasing functions of independent binary random variables is

non-negative. A proof adapted to this particular case is not readily

accessible in the literature. One is given here that is an immediate

consequence of a useful representation for the covariance of two functions

of independent binary random variables.

If XlX 2 1'.'9Xn are binary variables, then for any function f(x)

the representation

(3.1) f(x) = xif(li,x) (1 - x.)f(Oi,x)

holds for each i = 1,2,...,n. Let XIX 2,...,X n be independent binary

random variables. Since X. is independent of f(l.iX) and f(O.,X)

the representation

(3.2) Ef(X) = piE[f(li,X)J + qiE[f(Oi,X)]

then follows from (3.1).

Lemma 3.1

Let X, X 2...,X be independent binary random variables. For

any functions fX), j = 1,2, and any X.-- 1

cov[f1 (X),f 2(X)] = p.i " CoVf (lXi')'f2(li'X)]

+ q.i cov[fl(Oi' )'fOi')]

f)i • E[ f1 (li,x) - fl(Oi,X)] • E[f 2 (li) - f2 (OiX)].



Proof

From (3.2)

E[f 1 (X)f2(X)] = p, " E[fl(li'X)f 2(lil)J + q, " E[fl(Oi,,)f 2 (Oij)]

E[f( )] = Pi . E[fj(liX)] + qi " E[fj (0,,)], j = 1,2

Using these expansions the representation of the lemma is easily checked

when each covariance involved is written in the form

covEfl,f2] = E(f1 f2) - E(fI) 1 E(f2 ).

Theorem 3.1

Let X1,X 2...,Xn be independent binary random variables. Let

f C(), j = 1,2, be increasing functions. Then

cov[f (X),f 2 (X)] > 0.

Proof

We proceed by an induction on the order n of the functions.

For n = 1, from Lemma (3.1),

cov[f 1(X1),f2(X)] = p1q, • [fl(l) - fl(O)] • [f2(. ) - f2(O)]

an expression which is clearly non-negative for increasing f1 and f2 "

Assume that the covariance of any two increasing functions of

order n - 1 is non-negative. If f.(X), j = 1,2, are increasing3-

and of order n, then the related functions fj(li,X), f (0,X), j = 1,2

are all increasing and of order n - 1. Thus the first two terms of

the representation of Lemma 3.1 are non-negative. Since

f.(li,X) > f (O.,X), j = 1,2, the tird term of the same representa-3 - 3 j 1



tion is also non-negative.

Corollary

Under the hypotheses of Theorem 3.1 and the additional assumption

that 0 < pi < 1 for each i = 1,2,...,n, a necessary and sufficient

condition for

cov[fiCX) ,f 2x) > 0

is that some variable x. be essential to both f and f21 1i

Proof

If no x. is essential to both f and f2' then f 1X) and

f2 (X) are themselves independent random variables and their covariance

is zero.

On the other hand suppose some xi is essential to both f and

f2 ' From Lemma 3.1 cov[fl (X),f 2 (X)] can be expanded about this

particular variable. le shall show that the third term of this expansion

is strictly positive. That x is essential to both functions means1

that there exists vectors (>i,- ), j = 1,2, such that

f (li_ x(j )) > f (Oiqx(J)0).

Then, letting P('i,x) = TP[ Xk = Xk] ,
V/i

E[f.Cl.,X) - f.(O.,X)] If Zf(l ,x)- f (0.,x)] PC.,x

Ii 3 1 ~ a> [f i xE(J))_ - fji(Oita Q~) ] P ( ' i l Qx~ ) )-  > 0,

for j = 1,2. Since also piqi > 0, the third term is indeed strictly

positive.
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4, Approximations to reliability

We shall develop some convenient upper and lower bounds on the

reliability of coherent systems whose components are independent but

not necessarily of the same reliability. The following three lemas

will be useful.

Lema 4,1

Let X, X2 ,...,Xn be independent binary random variables. Define

f (X) = T Xi, where A is a subset of 1,2,...,n , j = 1,2,...,m.
SieA ,

Then

(4.1) P[f = 00... ,f = 0] > P[f = 0,...,fr 0) - PIfr+l 0 1-fm 0

for r = 1,2,...,m.

Proof

Define

F1  = 0 if each fj =O, j= 1,2,..., r

1 otherwise

F2 0 if each f. =0, j =r+lr+2,...,m

11 otherwise

Thus F l F2  1 - (1-f) Since each
j=l J=r+l

fj is increasing, F, and F2  are increasing. By Theorem 3.1

E(FIF2 ) > E(FI).E(F2 ) or equivalently E(l - FI)(l - F2 ) > E(l -F )E(l -F2)
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or equivalently PEF 0 0, F2 = 0] > PEF 1 = 0].P[F 2 0).

Repeated application of Lemma 4.1 yields

Lemma 4.2

Under the same hypothesis as in Lemma 4.1,

m
(4.2) P[fl= 01'..., fm = O >IPf = 0).

Lemma 4.3

Let x1 ,x2,...,x be independent binary variables. Define

fj(x) = TT x., where A. is a subset of (1,2.... n) , j = 1,2,...,r.
- ieAj 3

A sufficient condition that each x. such that ieA. for some j be

essential to

r
F = 1 - 7 (l - f )

J -l

is that no one of the sets A should be wholly included in any other.

Proof

Consider some xi. For i / i let
io 0 O, 0

(0) 1 if ieAjo
1 0 otherwise

For j X Jo, A - A.o is not empty so that f (X, ix () = 0. Thus

F(x.o,x() .1 f JO (x,x ()) = 1 - x io. Then F(l.i,xO) = 1, F(Oi ,X0 ) = 0
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which shows x to be essential to F.xi0

Remark

If A9,A2, ... Am  as considered in the hypothesis of Lemmas 4.1

and 4.2 satisfy the condition that no one of them is a subset of another

and if there is at least one xi such that i is an element of at

least two of the sets Aj, then with respect to Lemma 4.1 there is

an r for which x. is essential to the functions F1 and F2

defined in the proof. Then the inequality obtained in Lemma 4.1 is a

strict inequality for that r, and consequently the inequality obtained

in Lemma 4.2 is also strict.

Every coherent system has a finite number of minimal paths, i.e.

vectors z for which O(z) = 1 and such that if x < z, then O(x) =O.

From a more physical point of view the elements of z which are l's

correspond to a smallest set of components which by functioning cause

the system to function. Let us call the set of components indicated

by the unit elements of a minimal path a minimal path set. Since

the system functions if, and only if, all the components in at least

one of the minimal path sets function, a representation of the system

is obtained by imagining that the components of each minimal path set

act in series and that the minimal path subsystems so obtained act in

parallel. In such a representation of the system the same component

may occur in more than one minimal path set making it necessary to

suppose some deus-ex-machina which causes all replications of the same

component to function or fail simultaneously. It is plausible that if
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in the representation each replica of the same component were replaced

by an independently operating component of the same reliability, there

would be an increased chance that the components of some minimal path

set would all function. Thus a computation of reliability which treats

the system as a set of indepenaent minimal paths acting in parallel

should furnish an upper bound on actual system reliability.

Similarly every coherent system has a finite number of minimal

cuts, i.e. vectors I for which = 0 and such that if x> ,

then O(W) = 1. The set of components corresponding to the elements

of a minimal cut which are O's is a smallest set of components which

by all failing cause the structure to fail; we call such a set a

minimal cut set. Since the system functions unless all the components

of some minimal cut set fail, it can be represented as one in which

the components of each minimal cut set act in parallel and the minimal

cut subsystems so obtained act in series. In this representation it

is plausible that if the components which occur in more than one

minimal cut were replaced in each occurrence by independently operating

components of the same reliability, there would be an increased chance

for all components of some minimal cut to fail, and that a computation

of reliability which treats the system as a set of independently

operating minimal cuts acting in series would give a lower bound on

actual system reliability.

Theorem 4.1

Let 0 be the structure function of a coherent system with

independent components, not necessarily of identical reliability.
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Define

if all components of the jth minimal path set function

= otherwise

for j = 1,2, ...,a, where a is the number of minimal paths of 0, and

0 if all components of the kth minimal cut set fail

k= i otherwise

for k = 1,2,...,b, where b is the number of minimal cuts of 0. Then

b a
(4.3) TT P[ok = 1] < PEO = 1] < 1 - T (l - Pj = 1]).

k=l J=l

Proof

Let AjA 2 1 ..., A a be the minimal path sets of the system. Then

L X) = iT xi, j = 1,2,...,a.
SieA i

Since =0 if, and only if, a 1 = Oa= O,...,a a  0 we have

from Lemma 4.2

a
P o =0] >TTP[a = 0]

J=l

or equivalently

a
P[O = ] < 1 _ TT(l - P[ -1).

j=l

Let BI, B2,...,B b be the minimal cut sets of the system. Then

Pk(X) = 1 - TT (l - xi), k = 1,2 ...,b.
iCBk
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Define i = 1 Xi, i = l,2,...,n, fk =1 - Pk' and F =-). Then

fk(x) = T

and since ) = 1 if, and only if, 0 = I'2 = 1 " = 1 or

equivalently F = 0 if, and only if, f1 =Of = O...,fb -0 we have

b
P[F = o_ > TTP[fk = 0

k=l

or equivalently

b
Pit = l) >TTPEPk = 1).

k=1

Remark

The minimal path sets A1 ,A2 ,...,Aa satisfy the condition that

no one of them is a subset of another as a consequence of their definition.

It follows that if there is any overlap between minimal path sets, i.e.,

the same component occurring in two or more sets, and if 0 < pi e 1,

i = l,...,n, then the right hand side of (4.3) is a strict inequality.

If there is no overlap, i.e. the minimal path sets are disjoint, then

the functions gl,L2,'..,a are independent and equality is obtained.

The same criterion applied to minimal cut sets distinguishes between

strict inequality and equality on the left side of (4.3).

Example 4.1

The diagram in Figure 4.1 represents a coherent system having

seven components.
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2

6 7
Figure 4.1

As may be readily determined by inspection, the system has the minimal

path sets [6,71, (1,2,3J, (1,4,7), (3,5,6], 11,3,4,5), [1,2,5,7j,

12,3,4,61, and the minimal cut sets [1,6), (3,7), (2,4,61, 12,5,7),

11,4,5,7J, 13,4,5,6]. From the remark preceding Theorem 4.1 (also

see El, Section 2.7.7]) the structure function of the system may be

found by writing

al= x6x7  = 1 - (1-x1 )(l-x 6 )

a2 = XX2 X3 02 = 1 - (l-x 3)(l-x7 )

= lx 1x 4 = 1 - (l-x 2)(l-x 4)(l-x 6 )

= xxx (1-x2)(1-x5)(l-x7 )

a 5 X1 X3X4X5  1 - (1-x1)(l-x 4 )(l-x 5)(1-x7)
a6 = xlx2x5x7  6= - (l-x 3)(l-x 4)(l-x5)(l-x6 )

3 4 X 2)(3x 4x)
c7 = x 2 x 3 x 4 X6

and using either of the representations

7 6
(4.4) =1-TT (l TT P. ['

j=l kJ k -
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The computation of the actual system reliability function by taking

the expectation of 0 in (4.4) is somewhat tedious. In this case

the result is too long an expression to be given here. On the other

hand the upper and lower bounds of (4.3) can be readily obtained

since

PrEa 1]= TTPit Pr[ k = ] = 1 - TT (1 - pi)
ieA i ieBk

Figure 4.2 is a plot of the actual reliability function and the

bounding functions in the case pi = p1 i = 1,2,...,n, and furnishes

an indication of the precision of the bounds.
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5. Generalization of some properties of coherent structures to
the case of components with non-identical reliabilities.

A number of interesting properties of coherent structures whose

components have identical reliabilities were established in El). We

shall prove some of these properties valid for coherent structures

whose components do not have identical reliabilities and present some

additional results for this case.

Theorem 5.1

Let XX 2,...,X be independent binary random variables. Let

f(x) be increasing. Then

cov[f(x),xi] > 0, i = 1,2,...,n.

If in addition 0 < p_ < 1, j = 1,2,...,n and x. is essential to

f, then

cov[f(X),X i > 0.

Proof

Since the function of x identically equal to x. is increasing- 1

the result follows from Theorem 3.1 and its corollary.

The representation of Lemma 3.1 gives in the present case

(5.1) cov[f(X),X i ] = piqi • E[f(li,X) - f(O.,X)].
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From (3.2)

( h(p) OEf(X)

(5.2) T- -i = EMf(liX) - f(oipX)

so that

bEf(X)
(5.3) cov[f(x),Xi] = Pqi - - •

Thus, assuming 0 < p, < 1, a necessary and sufficient condition that

W > 0 at p = (pl) is that cov[f,X > 0 at the same p.

If 0 is a structure function, then the function h(p) = E[O(X)Ip]

is the structural reliability corresponding to component reliabilities

p. If 0 represents a semi-coherent structure, 4 is increasing, so

that bh> O, i = 1,2,...,n. The partial derivative of structural
p-

reliability with respect to a component reliability is identically

zero if the component is not essential to the structure and, on the

interior of the space of component reliabilities, strictly positive

if the component is essential.

Theorem 5.2

Let X, X2...X n  be independent binary random variables. Let

f(x) be increasing. Then

cov[f(x),S(X)) > 0,

n
where S(x) = Z xi .

i=l
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Proof

Since

n
cov[f,S] = E cov[fX i]

i=l

the result follows immediately from Theorem 5.1.

We define a function f(X) of n binary random variables

X.,X 2,...,X n  to be increasing in expectation if

E[f(X)IS(X) = k + 1] > E[f(X)IS(X) = k, k 1 ,...,n-i,

n
where S(x) = E x..

This definition extends the definition given in [1] of a structure

function $ semi-coherent in probability if

P[: 11S : k + 1] > P[ = 11S k], k = 0,l,...,n-l.

Theorem 5.3

Let X ,X2 ,Xn be independent binary random variables. Let

f(x) be an increasing function. Then f(X) is increasing in

expectation.

Proof

We shall use induction to prove f increasing in expectation.

For n = 1 we need E(fIS = 1) > E(flS = 0), or equivalently

f(l) > f(O).
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Now assume that f increasing implies that f is increasing

in expectation for functions of order n - 1. Define

n
T (X) Z X

i - j=]

jxi

Then

E[f(X)IS(X) = k] = E[f(lX)IT (X) = k - 1) - PCX, = 1IS(X) = k

+ E[f(Oi,2)jTi(X) = k] - P[X, = OIS(X) = k.

Thus with the addition and subtraction of suitable terms, we may write

E[fls = k + 1] - E[fjS = k]

= P[x i = 11S = k] (E[f(fl,x)IT, = k - E[f(li,X)ITi = k -1])

+ P[X. = OS = k + 1] • {E[f(O, )ITi  k + 1] - E[f(O,X)IT i = k])

+ E[f(lI,X)IS = k • (PEXi = 11S = k + 1] - P[X i = 11S = k])

+ E[f(O.,X)IS = k • P[X i = OIS = k + 1] - PCX i = OIS = k])

By inductive hypothesis

E[f(li,X)IT, = k] > E[f(li,j)ITi= k - 1]

and

E[f(Oi,X)IT i = k + 1] > E[f(Oi,X)IT = k].

Also

P[X. 1 IS = k + 1] - P[X 11 us = k = PrX. = os = k - PCX. = 018 = k + 1]
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Thus we need only prove:

(a) E[f(li,X)IS : k] > E[f(Oi,X)IS = k]

(b) PCX its = k + 1]> PCX. = itS = k]

To show (a) simply write

E[f(lX)IS = k]-E[f(Oi,X)IS k]

- E[f(1i,X) - f(O.,X)IS = k] ,

since f(li,x) > f(Oi,x). Note that (b) is equivalent to

piP[Ti = k] piP[T i = k - 11

P[s = k + 1] P[S = k]

Using the expansion

P[S = k] = piP[Ti = k - 1] + (1 - pi)P[T = k]

(b) becomes equivalent to

(P[T i = k]1
2 > P[T i = k + 1) • P[T i = k - 1].

This last inequality holds since Ti, the convolution of binomial

random variables, has a monotone likelihood ratio.

Theorem 5.3 contains the result that when components are independent

a semi-coherent structure 0 is semi-coherent in probability for any

set of component reliabilities plp 2 ,...,p n . That a coherent structure

is coherent in probability, i.e. semi-coherent in probability and
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such that P(O 118 = n) = 1, P(O = OlS = 0) = 1 follows immediately

from the additional properties of coherent structures ~C)=1, 0~(0) = 0.

Theorem 5.4

Let XJX 2 1... 1X n be independent binary random variables. Let

M() be increasing in expectation at plp 2, ... 'pn Then

covlf(x),S(X)) > 0

at l2,..tn

Proof

Let F(k) = E[f(X)IS k], k = 0,1,2 ,...,n, and g(X) =F[S(X)).

Then f increasing in expectation implies g increasing so that

cov~g,S] > 0 by Theorem 3.1. Since

n
E~g(X)) E E~fjS = k] * PES = k] = E~f)

k=0

and

n
E~g(X)S(X)J = Z kE~fjS = k] P[S8 k)

k=0

n
= E E~fSIS = k] P[S = k] E~fS1,
k=0

we have

cov[f,SJ = E[fSJ - Elf] -E[S] = E~gS1 E~g) ECS]

= cov~gS] > 0.
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Remark

Under the hypotheses that XI,X2 ,...,X are independent binaryn

random variables and 0 < pi < i, i = 1,2,..., n, if O(X) is a

structure function neither identically zero nor identically one, there

is no difficulty in defining the mean path and the mean cut of

by, respectively

P(P) : csl¢ = 11 = -

C~p): En - I O] EC(n - S)(1 - 0)]
C(p) E(n -SJ) = 0=

As shown on El], it is then immediate that

P(p) + C(p)= n + c[O]i Ej]

In this context the condition covl,S] > 0 is equivalent to

P(p) + 0(p) > n.

Theorem 5.5

Let XI,X2,...X n  be independent binary random variables and

f(X) be a function such that any one of th properties

(a) cov[f(X),S(X)] > 0

(b) cov[f(X),Xi] > 0 for each i = 1,2,...,n

(c) f is increasing in expectation

holds for every choice of pl'P2,'..pn for which 0 < p, < 1,

i = 1,2,...,n. Then f is increasing.
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Proof

Note that (b) implies (a) since

n
cov~f(x),SCX)) = Z covtf(x),X ill

i=l

and (c) implies (a) by Theorem 5.4.* Thus it remains to show that (a)

implies that f is increasing.

Now f is increasing if, and only if, f is increasing in each

coordinate, i.e., fMl,x) > Vu,)for all i and (-.,x). Suppose

0
f is not increasing. Then there is an i and a vector (-,,E) such

that f(l a,0 ) < f(O.,E ). For j = 1,2,..., n; j X i, let

01~ i f x -l=

pi i.f x. 0.

From Lemma 3.1

cov[f(x),X i] = p iqji E~f(l.,X) - f(0.,X)].

Since for each j =1,2 ,..., n

E[f (l,) f (0i ,X)J < O~.. *max) (f(1.,) - f(O.,x)) <CD

we have

covlf(x),X.] < p iq. . a -. 0, j i.

Also

Erf(l .,X) - f(ixl< fful 0 ) f(0.,x00)) P( 0 )

+ ai [ -P(.~x0
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where

, iTPr[X~ x x1, so that

cov[f()X),1 -, pq ff(i., i 0) -(i~

Thus, since p > 0 and cov[f,S) > 0 during the limiting process,

we show frli,xO) > f(0,,x0) and nave a contradiction.
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6, The multivariate Moore-Shannon inequality

The univariate Moore-Shannon inequality

(6.1) p(l - p)dh(p) > h(p)[l - h(p)]
dp -

compares structural reliability h(p) with component reliability p

in the case of semi-coherent systems whose components are of identical

reliability. The inequality is strict except when h(p) a 0, h(p) = 1,

or h(p) = p. It is derived for two-terminal networks in [3) and for

coherent structures in [1]. The inequality is the principal tool in

the demonstration of the S-shaped relationship between structural

reliability and component reliability. We shall obtain a multivariate

generalization, directly from Theorem 3.1, which permits a much

simplified proof of the S-shapedness result.

We will need

Theorem 6.1

Let XVX2 ,...,X n be independent binary random variables such

that 0 < p. < 1, i = 1,2,...,n. Let O(x) be the structure function

of a coherent structure having at least two essential components. Then

cov[O(X),S(X) - O(X)) > 0,

n
where S(x) = x..

i=l
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Proof

To apply Theorem 3.1 and its corollary we must show first that

S - 0 is increasing and second that 0 and S - 4 have an essential

x. in common.
1

To show S - 4 increasing is to show that for each vector (.,x)

S(li x) - (lva) > S(oi,) - V(oi,x)

which is equivalent to

1 > - (i, ),

a statement which follows immediately from the properties of 4.

To show that 4 and S - ) have an essential x. in common

suppose that xi, x. are essential to 4, and that neither x. or1 3 3.

x is essential to S - 4. Then

S(li,a) - C(li,a) =S( 0 ,) = )(Oi,a), all ('ix).

S(Ijx) - 0(ljx) = S(Oj,a) - 0(Oj,a), all (.j,x).

Thus

(li,a) - 0(Oi,a) = 1, all (.ix),

C(lj,x) - 0(Oj,x) : 1, all (-,ix),

which implies

)(li,x) = 1 0(Oi,x) 0

O(ljx) :_ 1 .(O,x) = 0.
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But a contradiction arises from the consideration of O(iiOj,x) or

4)(O.,lx).

We can now prove the desired generalization of the Moore-Shannon

inequality;

Theorem 6.2

Let XX2,.. X n be independent binary random variables such

that 0 < pi < 1, i = 1,2,..., n. Let O() be the structure function

of a coherent structure such that Ox) x, for i = 1,2,...,n. Then

n 6h(p)
p P( - pi) -- > h(p)[l - h(p)],

i=l Pi

where h(p) = E[O(X)Ip).

Proof

By hypothesis, 4 has at least two essential components. The

inequality of Theorem 6.1 can be rewritten as

n
(6.2) E cov[4),XiI = cov[4,S] > E[Il - EEO]).

i=l

Since h = E[] and from (5.3)

ah
(6.3) cOv[OXi] = pi(l - Pi) FT.

the result follows.

We refer to the result of Theorem 6.2 as the multivariate

Moore-Shannon inequality. It is clearly valid, but without strict

inequality, when 0 0, , or xi.
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Application to S-shapedness

Let O(W) be a coherent structure function and h(p) be the

corresponding structural reliability function. Assume that all

components have identical reliability, i.e., pi = p, i = 1,2,...,n.

Then

dh= n ah dpi n ah

dp i=l ap dp il

so that by Theorem 6.2

dh n Pi Pi)h
p(1 - p)d - i (l - P5 > h(l - h), 0 < p <1,

=1 I

unless 4 = x. for some i. Thus except for the three exceptional

cases if h(po) = pO, 0 < pO < 1, then d> 1 at p0. It follows

that the curve h(p) can cross the diagonal p only from below, if

it crosses at all.

From (5.2)

-h  _(:i,2) - O(i) 1 if (i,0) is a path of the structure

dp O _ 0 otherwise

and

= 1 if ( is a cut of the structure

p i 0 otherwise

It follows that if no minimal path set or minimal cut set of the structure
dh

consists of just one component, - = 0 at p = 0 and p = 1. Then
dp

h(p) must cross the diagonal p at least once (from below) and can

cross only once.
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If some one component is a "minimal path", then clearly the structure

is more reliable than that component, i.e., h(p) > p, 0 < p < 1. If

some one component is a "minimal cut" then the structure is less reliable

than that component, i.e., h(p) < p, 0 < p 1 (see [3], [1]). Thus,

in these cases h(p) does not cross the diagonal at all.

Quite often one wants to study the changing relationship between

structural reliability and component reliablities when component

reliabilities vary as a function of some parameter. One case of this

is the S-shapedness relationship just considered, where pi(p) = p,

i = 1,2,...,n, 0 < p e 1. Another is the common situation in which each

component reliability is supposed to be a decreasing function pi(t) of

the accumulated operating time t of the system, 0 < t < 00. In problems

of reliability growth one might want to treat each component reliability

as an increasing function of a parameter representing development effort

or expenditure. The following t:eorem gives one way of writing the

Moore-Shannon inequality in such situations.

Theorem 6.3

Let X X2 ,.. .,Xn be independent binary random variables. Let

(x) be a coherent structure function such that O(x) x1  for

i = 1,2,...,n. Suppose for -co< a < 1 < b < A, pi(0) = P[X = ii]
dp. d

is such that - exists, i = 1,2,...,n. Then L exists a < 1 < b--i dhi

and for a < < b, 0 < pi(4) < 1, i = 1,2,...n

d/4 n dP i/d4

h71- h) > ci=l ( .P(I - Pp

cov[(X),X i4] n
where c.(ii) and c. 11 cov[ (X),S(X)ii] ani cl
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Proof

Write

dh n ah .dp n 8h dpi/d-O
- _E pE piq pi:-Oi~l F d i=1 P Piq i

Thu.3, using (5.3),

ndh n dpi/dl
E cov[O,x. • -d' i~lpiqi

Dividing by, respectively, the two sides of (6.2) gives

dh/d n cov[4,X i ]  dpi/didhd >Zcoy[,S piq.
h(l - M >i=l

We use Theorem 6.3 to obtain S-shapedness results in the case

of components of differing reliabilities. Specifically:

Theorem 6.4

Let pi(10 satisfy for i = 1,2,...,n

(63)p i 1(6.3) pi(O)[l - pi(1)] > 717i- )1' 0 < 11 < 1

and let h[p(±)] be the reliability function of a coherent structure

such that O(x) _ x for i = 1,2,...,n. Then

(6.4) h hd(I > ) < cs < i.

(6.4) implies that h[p(- )] crosses the diagonal at most once.
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Proof

For O< v < 1,

d Pi(N) 1 n 1
#dh7 > ci(W ) > 711 ci( L) = i-
h(-)i=l pi l-i.

the first inequality follows from Theor-m 6.3, the second by hypothesis.

n

The final equality is a consequence of the fact that Z ci(11) = 1, the
i=l 2

c. (i) being defined in Theorem 6.3.

We can go a step further; we can state conditions under which

h[p(-)] actually does cross the diagonal Q precisely once.

Corollary

Assume pi(v.) satisfies (6.3) and that pi(IL) actually crosses

the diagonal once for i = 1,2,...,n. Assume further that h(p) is

the reliability function of a coherent structure such that () x xi

for i = 1,2,...,n and that h(p) actually crosses the diagonal exactly

once. Then h[p(I±)] crosses the diagonal exactly once.

Proof

For -.± sufficiently close to 0, each pi(ji) < ji, so that

h[p()] < h(I) < i.

Similarly for L sufficiently close to 1, each pi () ±, so that

h[p(4)] > h(4) > L.

Thus h[p()] crosses the diagonal at least once. Since we know

from Theorem 6.4 that h[p(i)] crosses the diagonal at most once,

the conclusion follows,
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